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LETI'ER TO THE EDITOR 

Adsorption of a directed polymer chain in the presence of 
monomer attraction: analytical results 
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Department of Physics, Clarkson University, Potsdam, NY 13699, USA 

Received 3 April 1991 

?"e adsorpiion Uf directed chain is studied in two dimensions using 
a restricted solid-on-solid model and allowing for a short range attraction between 
monomers. All the thermodynamic properties of the chain are evaluated exactly. The system 
does not exhibit a collapse or chain folding transition. 

In a series of recent papers [l-41 the question of the adsorption of a single directed 
poiymer chain was studied in two dimensions, a = 2. i n e  chain was modeiied by a 
solid-on-solid model used earlier by Privman er al [5] complemented by an additional 
energy term describing the attraction between monomers. In [ l ]  it was argued on the 
basis of numerical results that, in addition to the adsorption-desorption transition 
found in [SI, for a sufficiently strong monomer attraction a first-order chain-folding 
or collapse transition also takes place. In [Z-41 additional analytical results were 
ucriveu IUI LILS pirase uiirgram. 

The chain-folding transition was studied a long time ago by  Zwanzig and Lauritzen 
[6]. These authors derived an exact expression for the grand canonical partition function 
of the chain in ZD, described by a model similar to the SOS model. On the basis of 
their'exact result they concluded that the chain-folding transition was second order. 
At the transition the specific heat exponent a =f .  It has to be noted that the result of 

In the present work we report results obtained for the above problem, using a 
restricted SOS (RSOS) model for the description of the polymer chain. The advantage 
of the RSOS model is that all the calculations can be performed exactly. However, 
imposing the restriction on the SOS model washes out the collapse transition. In the 
earlier studies of interfaces by means of solid-on-solid-like models, one got used to 

properties are studied [7]. In the present situation this is not the case. Although the 
RSOS version of polymer adsorption in the presence of monomer-monomer interaction 
is less spectacular, due to the availability of exact analytical expressions for all 
thermodynamic quantities, a number of interesting conclusions can be made, as well 
as enabling some of the earlier results to be better understood. 

Cmrider a directed random walk on a two-dimensional square lattice shown in 
figure 1. The left end of the chain is grafted to the surface at n =O. In terms of the 
higher valued nj height variables the SOS model of this chain can be modelled by the 
transfer matrix T with matrix elements (see [ll]) 
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Figure 1. A typical configuration of a directed polymer chain described by a RSOS model. 
Heavy lines of unit length stand for monomers and the double lines denote possible 
interadinns between monomers. 

Here a = (ni ,  nj+,), p = ( n i t l ,  ni+*) ,  o is the fugacity, K and T are respectively the 
Boltzmann weights due to the surface attraction and the monomer-monomer attraction 
and are given by K = eK/k7, r = with K ,  J > 0. For L, I and M in ( 1 )  one has 

Lmp = l + ( l n i -  n,+ll+lni+l -nj+2I)D (2) 

La =&.,+,a (3 )  

=min(lni-njtIl,ln,+, - n j d ) t { 1  -sign[(ni-ni+l)(nj+,-s+z)l}. (4) 

The grand partition function of the chain can he written as 

Here Z ,  is the Boltzmann weight of all walks with Lx steps in the x direction, and 
U, U are vectors determining respectively the initial and final positions of the chain 
(since we graft the left end of the chain, ( V I  =(Ol). In the earlier studies [l-41 the 
differences Ini- ni+,l could take on any value. We now restrict this difference to take 
on only the values 0 and 1, and consider the following ansatz for the eigenvector of 
T corresponding to the largest eigenvalue. 

for n = n‘= 0 
for n =0, n‘= 1 
for n 1 .  

With p> 0 the above eigenvector could in principle describe the adsorbed state of the 
chain. Inserting the above ansatz into the eigenvalue equation for T, and fixing the 
normalization of 4 by putting an= 1,  it follows that b, = (I-,. Denoting the largest 
eigenvalue by A, one obtains the following system of equations for the five unknowns 
bo, a- , ,  a , .  IA A: 

K b O +  Koa-, e-’= Abo (7) 

Kbo+ KoTa_l e-’ = ha,  (8) 

wa, e* + 1 i oraq e-” = Aa, (9) 

ma,  e’+ l+oa- ,  e-’= A (10) 

ora, e” + 1 + ma-, e-” =ha-, . (11) 
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From the last three equations one can express A as a function of o, T and p. This 
leads to the following third-order equation 

It can be seen from the above equation that the adsorption-desorption transition of 
the chain cannot be first order, no matter what the values of o and T are. At the 
unbinding transition p becomes zero, and hence in the unbound state A is independent 
of p. The deviation from the transition can be characterized in terms of p. Since from 
(12) it follows that A is an even function of p, one concludes that all the first derivatives 
of A with respect to p are continuous at the transition. 

Once the largest eigenvalue of 7 is known, the thermodynamic properties of the 
chain can be easily obtained in the limit when the average length of the chain (L)+ m. 
This corresponds to a singularity which develops in the denominator in ( 5 ) .  The infinite 
chain limit is then defined by o h  = I .  Using this relationship and p = 0 in (12) one 
obtains for the two physically acceptable values of A as a function of T the result 
shown in figure 2. A first-order transition could be obtained if the two curves in figure 
2 intersected. However, in the RSOS model this never happens. Using (7) and (8) one 
can obtain the phase diagram analogous to the one shown in figure 2 in [I]. This is 
shown in figure 3, whereas the density of the interacting monomers (which quantifies 
the extent of chain folding), ( M ) / ( L )  in the infinite chain limit is shown in figure 4. 
Figure 4 shows the continuous variation of this density across the phase boundary of 
figure 3. Comparing the derived phase diagram with that of [I], one remarks that not 
only is the line of first-order transitions from the collapsed to the extended state missing, 
but the K = K ( T )  curve is qualitatively different from the one given in [I-41. This can 
be understood from the following analysis. 

Let us consider the 7’00 limit in both the SOS and the RSOS models. It can be 
easily shown that for a chain of length L, for large L the monomer-monomer interaction 
term is maximized in the SOS model when the chain acquires the shape shown in figure 
5.  (We assume a finite K.)  It consists of columns with n -6 and there are -a such 
columns. Fluctuations around the shape shown in figure 5 are still present. In this 
limit ( M ) / ( L ) + l .  The picture is entirely different in the RSOS model. as can be seen 

A 3 - A 2 (  I +2o Cosh p )  - A O J ~ ( T ~ -  1 ) +  0 2 ( T -  I)’= 0. (12) 

20 30 40 

Flgure 2. The two physically allowed solutions of equation (12) for the maximal eigenvalue 
of the transfer matrix as a function of I. A first-order transition could take plaa  if the two 
curves intersected. 
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Figure 3. The phase diagram of the adsorption-desorption transition in the presence of 
monomer attraction in terms of I( and t. 
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Figure 4. The interacting monomer density as a function of I along the phase boundary 
depined in figure 3. 

In the r + m  the chain becomes rigid and a tremendous loss of entropy 
takes piace relative to the situation in the SOS model. In the limit of infinite chain 
( L ) = 2 ( L x )  and ( M ) = ( L , ) ,  which is the asymptotic value that the curve in figure 4 
reaches. Since (M)/(L)+l  in the SOS model, and there are only -a monomers 
attracted to the surface, in order to keep the chain bound to the surface the critical 
value of K must tend to infinity with t + m. One obtains the phase diagram shown for 
example in figure 2 in [l]. In the RSOS model, where ( M ) = ( L , )  and since (as can be 
seen from figure 6) the number of monomers attached to the surface is also (LA, an 
infinitesimal K already keeps the chain bound to the surface. Hence, one obtains the 
phase diagram shown in figure 3. 

Another interesting way to compare the SOS and RSOS models is to recall the way 
the authors in 12-41 'derived exactly' part of the phase diagram. It was argued that in 
the collapsed phase, where ( M ) / ( L ) # O  the product OT acts as an effective fugacity, 
and therefore ?Z must develop a singularity at WT = 1. The location of the multicritical 
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Figure 5. The configuration of a directed polymer chain modelled by a SOS model in the 
limit of infinitely strong monomer interaction. 

L, - LIZ 
Figure 6. The configuration of a directed polymer chain modelled by a RSOS model in the 
limit of infinitely strong monomer interaction. 

point, where the adsorption-desorption transition turns from second order to first 
order was obtained from the intersection of the curve w = 1 / ~  and the curve which 
gives the phase boundary between the bound and extended phases expressed in terms 
of w and T (instead of K and T as is done in figure 3). In the RSOS model the condition 
O T = I  should be replaced by w&=1, since here ( M ) / ( L ) = f  in the infinite chain 
limit, when T + m. Figure 7 shows the two curves in the RSOS model. Instead of crossing, 
these two curves smoothly join each other because both of them behave as w = 1 1 6  
for large values of T. 

In conclusion, we presented the exact solution of a RSOS model in d = 2 describing 
the adsorption-desorption transition of a directed polymer chain in the presence of 
monomer-monomer interaction. Contrary to the results obtained within the SOS treat- 
ment of the same problem we do not find a collapse transition. 

The authors acknowledge useful discussions with L Glasser and Th M Nieuwenhuizen. 
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Figure 7. The broken curve is w = 1 1 6 ,  the full curve is the phase boundary between the 
bound and unbound regions (the same as  in figure 3) in terms of w and I. 
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